Geometric models for robust encoding of
dynamical information into embryonic patterns [1]
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Introduction

Background:

Somites are the precursors of the vertebrae. They
consist of groups of cells separated by boundaries
that form one after the other. Somites are divided into
anterior and posterior compartments.

Experimental evidence:

Initially, the concentration of proteins involved in
somite formation oscillates in single cells. The
oscillations slow down and eventually stop when a
cell is incorporated into a somite. A cell ends up with
either high or low concentration of the proteins
depending on its position within the somite [2].

Objective:

Model such transition from a dynamic oscillatory
regime to a static multistable regime within the
framework of dynamical systems theory. Assess the
robustness of different transition scenarios.

Previous theoretical work:

Two main approaches are currently used to model
somite formation: the infinite-period scenario (phase
models with period divergence [2)) and the Hopf scenario
(gene networks undergoing a Hopf bifurcation [3)).
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We use abstract, geometric variables y and z to
represent the state of the system.

Initial dynamical regime D(x,y): oscillations
Final dynamical regime S(x,y): multistability

The transition from the initial to the final regime is
controlled by parameter g:
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where P=(y,z) is a vector and the weights __ -
6, and 6 are smooth functions of g. ¥
Such a smooth transition between two !
dynamical regimes could be achieved s.2)

via the interplay between two enhancers
[41. An enhancer is a region of DNA on
which proteins can bind to modify the e o
transcription of a given gene.

The SNIC bifurcation is a potential mechanism
(from a dynamical systems theory perspective)
for the infinite-period scenario.

A linear transition leads to a SNIC bifurcation,
during which the period of oscillations diverges.
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Pattern formation via a SNIC
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noise, we use a metric based g -

on the mutual information 2
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Discussion

SNIC-based pattern formation is consistent with
the latest experimental observations.
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The distribution of state variables stays broad until
cell-type specification.
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The period of oscillations diverges at the bifurcation [s].

We confirmed all the results
presented here with a similar
model based on gene
regulatory networks for the
dynamic and static regimes.
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