Latent space modelling of high dimensional cytokine dynamics

S. Achar1*, F. Bourassa2*, T. Rademaker2*, A. Lee1, T. Kondo3, E. Salazar-Cavazos1, J. S. Davies4, N. Taylor3, P. François2, G. Altan-Bonnet1

1Immunodynamics Group, Laboratory of Integrative Cancer Immunology, 2Pediatric Oncology Branch, and 3Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda MD USA. 2Department of Physics, McGill University, Montréal, QC, Canada

Context

- Immunotherapies are being developed [1]: engineered T cells, cancer vaccines, etc.
- New experimental and modelling tools are needed to assess and improve them.
- Success of immunotherapy treatments depend on antigen quality (potency) [2].
- Immune cells produce different cytokine response for antigens of different qualities.
- We lack quantitative principles to interpret high dimensional cytokine dynamics [3].

Data: cytokine time series

![Figure 1](image1.png)

Antigen encoding in latent space

Goal: find a low-dimensional representation in which cytokine dynamics can be modelled and classified according to antigen quality.

![Antigen Quantity](image2.png)

Figure 2: Using a small neural network, we found that time integrals of the logs of cytokines can be projected to a 2D space in which trajectories are separated according to antigen quality. We term this structure "antigen encoding".

Modelling latent space dynamics

We found simple dynamical equations to describe trajectories in latent space.

\[
\mathbf{r}(t) = \begin{cases}
\mathbf{v}_0 t \\ \frac{\mathbf{v}_0}{k} + \mathbf{v}_1 (1 - e^{-k(t - t_0)}) + \mathbf{v}_2 (t - t_0) + \mathbf{v}_3 t_0 \\
\end{cases} \quad t \leq t_0 \\
\frac{\mathbf{v}_0}{k} + \mathbf{v}_1 (1 - e^{-k(t - t_0)}) + \mathbf{v}_2 (t - t_0) + \mathbf{v}_3 t_0 \\
\end{cases} \quad t > t_0
\]

Figure 2: (Left) model parameterization of latent space curves. (Right) parameter values fitted on each curve reflect antigen quality (color of dots).

References

Model-generated cytokine data

1. Select model parameters
2. Compute curves of latent space model
3. Reconstruct

![Figure 4](image3.png)

Figure 4: Combining the latent space model and a non-linear reconstruction method allows us to generate model-derived cytokine time series.

Application to engineered T cells

![Figure 5](image4.png)

Figure 5: Values of model parameter v0 fitted on cytokine trajectories coming from anti-CD19 chimeric antigen receptor (CAR) T cells reveal sub-optimal activation those T cells by CD-19.

Conclusions

- Cytokine time series encode antigen quality in a 2D latent space.
- A simple dynamical model captures this dependency of the latent space on quality and can generate new cytokine time series.
- This model allows us to quantify the response of T cells engineered for therapy.

Acknowledgements

This work was also supported by a grant from the Simons Foundation to PF and an NSERC-CREATE Graduate Award in Complex Dynamics to FB. The Immunodynamics group is supported by the intramural research program of the National Cancer Institute.