Effects of musical tempo and spontaneous rates on pain perception

䍘 McGill

Wenbo Yi, Caroline Palmer, Mathieu Roy

Department of Psychology, McGill University

Introduction

Music can reduce pain perception by regulating emotion and arousal (Roy et al., 2008; 2012).
Structural properties of music such as rhythm and tempo influence autonomic functions and arousal (Wright et al., 2022).
Spontaneous rates at which people tap, clap, or perform music show large individual differences (Zamm et al., 2016; Palmer et al., 2019).
Musicians drift in tempo toward their spontaneous rate (Zamm et al, 2018).
Spontaneous rates consistent with attractor point of optimal energy efficiency (Begel et al., 2022; Hoyt \& Taylor, 1981; Palmer et al, 2022; Pfordresher et al, 2021).

Research Question
How do musical tempo and spontaneous rates affect pain perception?

Hypothesis

Music presented at tempi close to an individual's spontaneous production rate (SPR) will reduce pain perception more effectively than music at other tempi, following dynamical systems principles.

Method

Participants

60 participants (49 Females, 10 Males, 1 Agender) No history of pain-related disorders, alcohol or substance abuse, or hearing disorders
20 classified as Musicians (training years ≥ 6)
40 classified as Nonmusicians (training years < 6)

Design

Each subject receives 4 conditions, counterbalanced order, with pain administered during: No music; tempo at SPR; SPR +15\%; SPR - 15\%

Procedure

Tasks:

- Each individual's spontaneous rate determined with tapping task (produce familiar melody not used in study at comfortable rate). SPR = mean intertap interval (ms). Individuals indicate preferred musical style for the study Popular $=30$, Classical $=14$, Dance $=10$, International $=6$ Tempo for preferred style set to each individual's

SPR; SPR + 15\%; SPR - 15%; No music
Individual pain threshold = heat thermode on inner arm set to 40% of individual's subjective pain threshold

Perceptual Ratings:

- Participants rate perceived pain intensity (100-point scale) after each trial
Participants rate the music preference (7-point Likert scale) after each block of trials with the same music

Results

Participants' Spontaneous Production Rates

Participants (ordered fastest to slowest)

Large individual differences in optimal musical tempo Musicians' and nonmusicians' SPRs do not differ $t(58)=0.31, p=0.76$

Music Reduces Pain Perception SPR Tempo reduces Pain Perception

Musical Preference Ratings

Discussion

How do musical tempo and spontaneous rates affect pain perception?

- Presence of music reduced perceived pain replicates previous findings (Roy et al (2008; 2012)
Music presented at individuals' spontaneous production rates most reduced pain perception

Consistent with tempo as point of minimal energy expenditure Musical tempo preferences and style choices did not account for reduced pain perception

A proposed mechanism to explain the findings: Individual spontaneous rates =
States of most energy efficiency $=$
Most entrainment of endogenous rhythms

Future Directions

- Neural and physiological measures taken during music listening, such as steady-state EEG and respiration, may reveal how entrainment of endogenous rhythms at specific frequencies reduces pain perception

Future studies may investigate role of additional music attributes in pain perception, such as rhythmic patterns and timbral densities

References

Bégel, V., Demos, A. P., Wang, M., \& Palmer, C. (2022). Social interaction and rate effects in models of musical synchronization. Frontiers in and rate effects in
Hoyt, D. F., \& Taylor, C. R. (1981). Gait and the energetics of locomotion in horses. Nature, 292(5820), 239-240
Palmer, C., \& Demos, A. P. (2022). Are we in time? How predictive coding and dynamical systems explain musical synchrony. Current Directions in Psychological Science, 31(2), 147-153
Palmer, C., Spidle, F., Koopmans, E., \& Schubert, P. (2019). Ears, heads, and eyes: when singers synchronise. Quarterly Journal of Experimental Psychology, 72(9), 2272-2287.
Pfordresher, P. Q., Greenspon, E. B., Friedman, A. L., \& Palmer, C. (2021). Spontaneous production rates in music and speech. Frontiers in
Psychology, 12, 611867
Roy, M., Lebuis, A., Hugueville, L., Peretz, I., \& Rainville, P. (2012). Spinal modulation of nociception by music. European Journal of Pain, 16(6), 870877.

Roy, M., Peretz, I., \& Rainville, P. (2008). Emotional valence contributes to music-induced analgesia. Pain, 134(1-2), 140-147.
Wright, S. E., Bégel, V., \& Palmer, C. (2022). Physiological Influences of music in perception and action (Elements in Perception). Cambridge University Press.
Zamm, A., Wang, Y., \& Palmer, C. (2018). Musicians' natural frequencies of performance display optimal temporal stability. Journal of Biological Rhythm 33, 432-440.
Zamm, A., Wellman, C., \& Palmer, C. (2016). Endogenous rhythms influence interpersonal synchrony. Journal of Experimental Psychology: Human

Perception and Performance 42(5) 611

Acknowledgments

Chaires de recherch
 Canada Research

 de recherc ChairsWe acknowledge Idil Ozhan, Paul Friedrich, and Marie-Eve Lisak for their contributions to the data collection and Lisak for their
discussions.

