

Modes of temperature response in vertebrate development

Carina B. Vibe^{1,6}, Victoria Mochulska³, Sapna Chhabra¹, Thomas Thumberger², Joachim Wittbrodt², Paul François^{4,5}, Alexander Aulehla¹

1. Developmental Biology Unit, EMBL Heidelberg, Germany; 2. Center for Organismal Studies, University of Heidelberg, Germany; 3. McGill University, Montreal, Canada; 4. Université de Montréal, Montreal, Canada. 5. Mila Quebec Al Institute, Montreal, Canada. 6. Heidelberg University, Faculty of Biosciences, Heidelberg, Germany.

Introduction	Results	Discussion
 Medaka segmentation at different temperatures: temperature compensated morphology responsive segmentation clock 	1. Spatiotemporal dynamics is separable and is captured by two SVD modes	 Phase description is a convenient and insightful approach to describing oscillatory dynamics irrespective of mechanistic details.
Natural temperature variation: 21-27 C	Original1 mode2 modes3 modesOriginalReconstr, res =0.84Reconstr, res =0.05Reconstr, res =0.02Fit, res =0.1Image: Second seco	 We have established SVD as an unbiased way to analyze and parametrize phase kymograph data. We obtained simple modes that represent the dynamica of accmentation cleak on a sum of a

Methods

Kymographs of Her7-Venus oscillations in tail explants

100 100 50 14 14 16 Dist. from posterior (um) Time (somite stage) Dist. from posterior (um) Time (somite stage) non-linear linear constant constant

2. Identification of temperature sensitive and robust parameters

Segmentation clock **Parameters** frequency ω_0

 $|k|/k_{\omega_0}$

temporal oscillation and a spatial phase gradient.

These modes correspond to the phenomenological alpha model proposed earlier [2]. In this model, the process of segmentation is driven by phase differences between local oscillators and a globally synchronized tissue-scale oscillator. This results in exponential phase gradients.

- We identified three groups of parameters: **temperature sensitive:** frequency of the clock ω_0 , slowing down α , front velocity v_f ; weakly sensitive: spatial phase gradient β and growth velocity v_{tb} ;

Analysis: Singular Value Decomposition (SVD)

- Parameters are linear in temperature
- Pattern wavelength λ is compensated
- Slowing down per cycle α_c is compensated

3. Model correctly predicts compensation breaking with short temperature cycles

 \bullet

6h temperature cycle experiment result

temperature compensated: pattern wavelength λ and slowing down per cycle α_c .

We used the alpha model and experimental analytic and temperature dependencies for numerical **modelling** of the system, starting with the compensated regime. We then **predicted** that compensation in the pattern wavelength can by broken by short temperature cycles. This prediction was confirmed by experiment with 6-hour cycles.

References

- 1. Seyboldt R, Lavoie J, Henry A, Vanaret J, Petkova MD, Gregor T, & François P. (2022). PNAS, 119(26), e2113651119
- 2. Lauschke VM, Tsiairis CD, François P, Aulehla A. Nature. (2013) 493(7430):101-5.
- 3. Zhang W, Scerbo P, Delagrange M, Candat V, Mayr V, Vriz S, Distel M, Ducos B, Bensimon D. Commun Biol. (2022) 5(1):113.

Institut **Courtois**

